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Role of Natural Killer Cells in Antitumor Resistance
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Abstract
Kaneno R. Role of natural killer cells in antitumor resistance. ARBS Ann Rev Biomed

Sci 2005;7:127-48. Natural killer cells constitute a population of lymphocytes able to

non-specifically destroy virus-infected and some kinds of  tumor cells. Since this lytic

activity was shown by non-immunized animals the phenomenon is denominated natural

killer (NK) activity and contrasts with specific cytotoxicity performed by cytolytic T

lymphocytes (CTLs) because it does not depends on MHC-restricted peptides recognition.

In fact, the main feature of most functional receptors of NK cells (NKRs) is their ability

to be inhibited by different kinds of  class I MHC antigens. In the middle of  the 1950�s,

Burnet & Thomas forged the concept of  tumor immunosurveillance and NK cells can be

considered one of the main figures in this phenomenon both for effector and regulatory

functions. In the present review the early studies on the biology of  NK cells were revisited

and both their antitumor activity and dependence on the activation by cytokines are

discussed.
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1. Introduction
In the middle of  the 1970´s Herberman et al., (1975) and Kiessling et al.,

(1975), showed that peripheral leukocytes of  normal mice were able to lyse some lineages

of tumor cells without a previous sensitization of the host. Since this lytic activity was

shown by non-immunized animals the phenomenon was denominated natural killer (NK)

activity as well as the effector cells (NK cells). It contrasts with specific cytotoxicity

performed by cytolytic T lymphocytes (CTLs) because they are able to interact with target

cells independently of peptides linked to major histocompatibility complex (MHC) antigens

performing an MHC-unrestricted cytotoxicity.

Most natural killer activity is attributed to a population of cells morphologically

defined as large granular lymphocytes (LGL) found in peripheral blood and lymphoid

organs (Timonen et al., 1979a, 1979b; Lotzova & Ades, 1988; Trinchieri, 1989). These

cells are larger than typical small lymphocytes, showing a higher cytoplasma:nucleous

ratio and large azurophilic cytoplasm granules (Timonen & Saksela, 1980).  LGLs are

non-T, non-B lymphocytes, since they do not express CD3 or TCR or any of  the TCR

chains (α, β, γ or δ) (Saksela et al., 1979; Timonen et al., 1979a, 1979b; Lotzova & Ades,

1988). B lymphocyte markers CD19 and surface Ig (Nishikawa et al., 1990; Natajarian et

al., 2002) are also absent and these cells are non-adherent leukocytes and do not show

phagocytic activity although they share the expression of CD16 with macrophages and

neutrophils (Trinchieri, 1989; Natajarian et al., 2002).

NK cells show a heterogeneous tissue distribution, and it was observed that

cells from mesenteric lymph nodes of BALB/c mice show the most prolific NK activity

(53.9% of  lytic activity against Yac-1 target cells), followed by inguinal lymph nodes

(30.4%), spleen and blood (26.4 and 25.3%, respectively) peritoneum (7%) and bone

marrow (3.8%) (Herberman et al., 1975).

Reynolds et al., (1981) observed that in rats the main NK activity is presented

by blood and spleen (22.1 and 20.5%), whereas peritoneum and bone marrow cells show

low lytic activity (6.4 and 1.1%). These authors also observed that NK activity decreases

with age, although the number of peripheral LGL had not been altered. NK activity is

also under the influence of  the host�s genetic background; and different inbred strains of
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mice present different level of  lytic activity. It was demonstrated by Herberman, et al.,

(1975) that some inbred strains of mice like B6C3F1 present high NK activity (39.0% of

specific lysis of RBL-5 cells), whereas others like C3H have shown very low activity

(2.6%). They also observed that nude mice show higher NK activity than their heterozygous

counterparts both against RBL-5 and Yac-1 target cells.

Besides the high correlation between LGL and MHC-unrestricted lytic activity,

it must be noted that not all LGLs show cytotoxic activity and not all MHC-independent

lytic cells are morphologically identified as LGL (Trinchieri, 1989). Reynolds et al., (1981)

observed earlier that there is no correlation between the number of  LGL and NK activity

of lung infiltrating cells, indicating that the cells from this organ do not present an effective

lytic activity as happens with thymus and bone marrow cells, suggesting the existence of

cells in distinct stages of activation.

Isolation of LGL enriched cell suspension by Percoll density gradients

(Reynolds et al., 1981; Trinchieri, 1989) helped to achieve much knowledge of  NK biology

but the lack of a specific antibody made difficult the obtainment of highly purified

suspension of  these cells. At that time the isolation of  tumoral clones of  NK cells was

fundamental to amplifying the knowledge on functional and phenotypic features of these

cells.

2. Phenotypic Markers of NK Cells
NK cells constitute a heterogeneous population of lymphocytes with a non-

specific cytotoxicity presenting a variety of surface markers, which are shared with other

cell populations. This heterogeneity reflects on the phenotypic expression of  several cell

markers, which are evolved in antigen recognition, triggering lytic activity and cell regulation

(Trinchieri, 1989; Cooper et al., 2001a; Natarajan et al., 2002) and most NK cells can be

quantified or isolated through the recognition of  some of  these markers (West et al., 1977;

Trinchieri, 1989; Cooper et al., 2001b).

Among these surface markers, CD16 is expressed by virtually all of the NK

cells (West et al., 1977), however it is not exclusive to these cells, since it is found in

neutrophils, mature eosinophils and tissue macrophages, but is scarce on monocytes

(Trinchieri 1989).  CD16 is a low affinity receptor for the Fc portion of  IgG (FcγRIII) but

it cannot link to monomeric IgG.  FcγRIII has molecular weight of  50 � 70 kDa, is highly

glycosilated and is structurally different from the high-affinity receptor (FcγRI) expressed

by monocytes and macrophages or FcγRII (low affinity) expressed by B lymphocytes and

PMN (Trinchieri 1989). In this way, whereas the receptors on macrophages and neutrophils

enhance the phagocytosis of  antibody-linked structures, the Fc-receptors on NK cells

promote the antibody-dependent cell cytotoxicity (ADCC) (Kay et al., 1977), interfacing

with the adaptive and natural defense mechanisms. These receptors are able to signal

transduction since NK can lyse the anti-CD16 producing hybridomas (Lanier et al., 1988).

Although almost all NK cells express CD16, it had been observed that there is a CD16
-

NK cell subset possibly able to destroy some target cells distinct from those sensitive to
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CD16
+
 ones (Masucci et al., 1980).

The ganglioside asialo GM-1 is another classical marker of NK cells and the

polyclonal antibody against it frequently was used for phenotypic characterization of both

human (Herberman et al., 1977) and murine (Santoni et al., 1979) NK cells. This marker is

also not exclusive to NK cells and can be expressed by CTLs and activated macrophages

(Kasai et al., 1980; Young et al., 1980; Suttles et al., 1987).

The development of a variety of monoclonal antibodies allows the

identification of  many other antigens, especially in human and murine cells. The main

surface marker for human NK cells that is largely used in clinical studies is the CD 56, an

isoform of  neuronal adhesion molecule (Lanier et al., 1989), the function of  which in NK

cells appears to be associated with adhesion to target cells (Nitta et al., 1989; Suzuki et al.,

1991). CD56 has molecular weight of 200-220 kDa and is recognized in 90% of human

NK cells and a small percentage of T lymphocytes (Griffin et al., 1983). According to

Robertson & Ritz (1990), CD56
+
/CD3

-
 cells correspond to 15% of human lymphocytes

and depending on the density of expression of this marker, they can be divided into 2

subsets identified as CD56
dim

/CD16
bright

 or CD56
bright

/CD16
dim

 (or CD16
-
). Lanier et al.

(1986a) showed that resting lymphocytes are featured as CD56
dim

 and show high cytotoxic

activity. Other authors suggest that these two populations perform distinct regulatory

roles through the production of different cytokines (Cooper et al., 2001a, 2001b). In fact,

Cooper et al., (2001b) observed that fresh CD56
bright

 cells produce higher levels of  IFN-γ,

TNF-β and GM-CSF than CD56
dim

, when stimulated with PMA or co-cultured with LPS

�activated macrophages, suggesting that CD56
bright

 NK cells are the main source of  early

IFN-γ required for rapid macrophage activation in the initial phase of the immune response.

Although NK cells are CD3
-
 they share some markers with T lymphocytes, so

that 30% of human and 86% of rat NK cells express CD8 antigens (Reynolds et al.,

1981), whereas murine cells are CD8
-
 (Young et al., 1986; Trinchieri, 1989). These cells

also express CD2 antigens, probably using it for cell adhesion and for activation of the

effector function after interaction with LFA-3 (Fletcher et al., 1998). Although g and d

chains of TCR (Tγδ lymphocytes) are also associated with the ability of MHC-unrestricted

cytotoxicity, rearrangement of  TCR genes is not observed in NK cells (Ritz et al., 1985;

Lanier et al., 1986b), thus distinguishing them from Tγδ lymphocytes.

An important feature of  NK cells is the expression of  intermediary affinity

IL-2 receptor (IL-2R). This IL-2R is a gb heterodimer and is distinct from the low-affinity

a chain receptor and the high-affinity trimer receptor (αβγ) expressed by activated T

lymphocytes (Nishikawa et al., 1990). This feature allowed the exploitation of therapeutic

potential of in vitro or in vivo stimulation of these cells by IL-2, as will be further discussed.

3. Activation-inhibition Balance of NK Effector Function
The main feature of most functional receptors of NK cells (NKRs) is their

ability to react with different kinds of class I MHC antigens, which results in inhibitory

effect on the cytotoxic activity. This observation was the base of  the missing-self  hypothesis
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(Ljunggren & Kärre, 1990). According to this, whereas CTLs are only activated by contact

with MHC-associated antigens, NK cells are naturally activated and are potentially able

to destroy any self  cell. However, this destructive activity of  NK cells is suppressed by

interaction of  their receptors with any class I histocompatibility antigen. So, only the cells

that had lost the expression of class I MHC antigens are still susceptible to NK mediated

lysis, as observed in some tumor cells and virus infected cells (Zeidler et al., 1997; Orange

et al., 2002). In fact, many studies have demonstrated that that human class I-deficient

cells are susceptible to NK lytic activity, but became resistant after their  transfection

with HLA A, B or C alleles, whereas a similar phenomenon was observed with murine

cells (Shimizu & DeMars, 1989; Storkus et al., 1989; Orange et al., 2002).

Human NK cells interact with histocompatibility molecules through a variety

of  membrane receptors and, according to their structure, they can be classified as Ig-like

receptors (KIR and LIR) or lectin-like receptors (CD94/NKG2 and NKG2D) (Cooper et

al., 2001b; Natarajan, 2002), whereas mice express the lectin-like Ly-49 family as their

main receptors for class I MHC molecules (Lowin-Kropf & Held, 2000; Makrigiannis et

al., 2001; Natarajan, 2002). Each type of receptor shows a different level of affinity for

molecules codified by the several loci of class I MHC genes and any NK cell expresses at

least one ligand for these MHC molecules, a fact that constitutes a mechanism to avoid

autoreactivity.

The killer cell Ig-like receptor (KIR), also known as CD 158 is a family of

molecules that react with different class I MHC structure (Natarajan et al., 2002). In general,

KIR3D receptors recognize HLA-A and B, whereas those of  KIR 2D recognize HLA-C

alleles (Middleton et al., 2002). Minimal variations in each receptor allow them to recognize

allotypic differences in MHC molecules. Although it is believed that the main function of

KIRs is to scan the normal expression of  class I MHC, the cognitive process is not totally

independent from the peptide linked to the histocompatibility molecule. In fact it has

been demonstrated that the substitution of amino acids in positions 7 and 8 of a peptide

nonamer promotes the recognition of MHC-peptide by other receptors (Malnati et al.,

1995 Lowin-Kropf et al., 2000).

The mechanism of KIR-induced signal transduction is not completely known

but it has been shown that these receptors frustrate cytotoxicity through the recruitment

of tyrosine-phosphatase SHP-1 (Lowin-Kropf et al., 2000) for the immunore4ceptor

tyrosine-based inhibition motifs (ITIM), inhibiting signal transcription (Burshtyn et al.,

1996; Campbell et al., 1996).

Another family of NKRs is the leukocyte immunoglobulin-like receptor-1

(LIR-1), also known as ILT-3 or CD58h (Cella et al., 1997; Fanger et al., 1999), which

recognizes most class I MHC structures without discriminating among allotypic variations.

Hence, any NK cell expressing LIR-1 is inhibited by any target cell expressing any class I

molecule and this effector cell only will be able to destroy target cells totally depleted of

HLA antigens (Cella et al., 1997; Fanger et al., 1999).

Receptors CD94/NKG2 are lectin-like receptors, in which subunits CD94
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and NKG2 are linked by disulphide bonds. These receptors are specific to non-classic

class I MHC antigens that are codified by HLA-E locus (Soderstrom et al., 1997). The

subunit CD 94 is an invariant chain (Chang et al., 1995) whereas the NKG2 subunit

constitutes a multigenic family with at least 5 proteins named NKG2A (with a B variant

chain), NKG2C and NKG2E, whose intracellular structure share a high degree of

homology (Chang et al., 1995; Soderstrom et al., 1997) and are responsible for inhibitory

signaling after interaction with MHC molecules.

Mice NK cells express Ly 49 (C-type lectin-like receptors) as the main ligand

for class I MHC molecules, which perform the same role as human KIR molecules (Lowin-

Kropf & Held, 2000; Makrigiannis et al., 2001; Natarajan, 2002) when reacting with H-

2K and H-2D structures (mouse class I antigens). Some KIR and Ly 49 receptors are

linked to adaptor molecules with immunoreceptor tyrosine-based activation motifs (ITAM)

for signal transduction. These receptors show short cytoplasmic chains that are associated

with homodimeric adaptor molecules DAP 12 or KARAP, that contain cytoplasmic ITAM

sequences, which promote cell activation via Syk and ZAP-70 (Tomasello et al., 1998; Wu

et al., 2000). Therefore, some KIR and Ly 49 receptors can play an activating role after

interaction with some MHC molecules.

NKG2D is the main activation C-type lectin-like receptors, showing just 20-

34% homology with other NKG2 (A/B, C, E) chains (Diefenback et al., 2000). NKG2D

is a homodimeric structure expressed by NK, CD8
+
 T cell, and Tγδ cells (Bauer et al.,

1999) that is bound to DAP-10 adaptor molecule that triggers tumor cell lysis (Wu et al.,

1999). In contrast with CD94/NKG2 that recognizes HLA-E antigens, NKG2D interacts

with MIC A and MIC B that are class I-homologous structures (Menier et al., 2002). MIC

A and MIC B show the domains α1, α2 and α3 of class I MHC molecules but fail to

express both β2-microglobulin and peptides bound to the a chain (Wu et al., 1999). MIC A

and MIC B are scarce on normal cells but are presented in high density by epithelial tumor

cells and, therefore, are important targets for NK cytotoxic function (Groh et al., 1999;

Natarajan et al., 2002).

Since class I MHC antigens are able to be bound by both inhibitory and activator

ligands of NK cells, the lytic activity of these cells appears to be the result of a fine

balance of  positive and negative signals triggered by such receptors. After the interaction

between effector and target cells and if activator signals are more prevalent than the

inhibitory ones, immunological synapses are formed between the cell surfaces and NK

cell release the contents of  cytoplasmatic granules. These granules are specialized

lysossomes found only in NK and CTLs (Griffiths & Isaaz, 1993) and are full of enzymes

and other compounds that have roles in the killing of  target cells (Lieberman, 2003; Trambas

& Griffiths, 2003).

Similarly to CTLs, in the early phase of cell:cell interaction, perforin monomers

are released by the granules, which polymerize on target cell membrane forming

transmembrane pores in the cell surface. Perforin shows strong homology with complement

C 9 molecule (Shinkai et al. 1988) as well as the resulting pores (Sauer et al., 1991), allowing
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the loss of  cell membrane integrity, influx of  water, and cell death by osmotic lysis. During

the degranulation of NK cells, they also release a series of many other compounds such

as granzymes, calreticulin, catepsins and granulisins in the immunological synapses. These

products penetrate the target cell through the perforin pores triggering its apoptosis by

several mechanisms, according to the compound involved.

Granzymes (a name derived from granule enzymes) are the second most

important of granular contents and they constitute a family of highly specific serine-

proteases that still inactive in acidic medium of  the granules (Lieberman, 2003) being

activated after release in the target cell cytoplasm. Granzyme A and B are the more abundant

compounds of granules and appear to be the main elements involved in the target

destruction. Granzyme B has a large spectrum of  substrate and can induce apoptosis of

target cells by activation of  the caspases cascade (Wolf  et al., 1999; Sharif-Askari et al.,

2001), lesion of mitochondria and cleavage of BID to cytochrome C (Heibein et al., 2000;

Alimonti et al., 2001), DNA fragmentation due to derepression of CAD (Thomas et al.,

2000) or even by cleavage of nuclear membrane (Browne et al., 2000; Zhang et al., 2001).

Granzyme A induces cell death through a caspase-independent mechanism,

promoting lesions on single-strand DNA and rapid loss of integrity of the plasmatic

membrane (Irmler et al., 1995; Suidan et al., 1996). This enzyme can also destroy the

nuclear membrane by acting on laminin and can destroy DNA by acting on histone

(Lieberman & Fany, 2003). Other members of  the granzyme family include granzymes C,

D, E, F, G, H, K, and M; all of  them are involved in cell destruction (Lieberman, 2003;

Trambas & Griffiths, 2003).

Calreticulin and catepsins protect the effector cells from self-destruction.

Calreticulin inhibits perforin and therefore is able to inactivate perforin polymerization on

its own membrane, whereas the catepsins family has both granzyme�activating and -

inactivating molecules, preventing self-destruction (Lieberman, 2003; Trambas & Griffiths,

2003). Granulisins released by NK cells appear to function especially against

microorganisms whose cell walls are susceptible to this molecule (Lieberman , 2003); but

this activity against cancer target cells remains unclear. The close interaction of  target and

effector cell membranes can vary from a few minutes up to hours and is called lethal hit,

since even after the cell detachment the signals for programmed cell death are still in

action (Lieberman, 2003; Trambas & Griffiths, 2003).

Other NK-induced cell-destruction mechanisms include the expression of

FasL (Berke, 1997; Screpanti et al., 2001), since many kinds of tumor cells frequently

express higher density of  Fas than normal cells. Binding of  FasL to Fas molecules on

tumor cells induces apoptosis signaling in these target cells by DNAse activation. TNF-

related apoptosis-inducing ligand (TRAIL) is also able to induce cell death in a similar

way (Kayagaki et al., 1999). Although apoptosis-induction is accepted as the main

mechanism for destruction of  target cells, perforin appears to be essential to the effector

function of any cytolytic cell, since animals knocked out for perforin are not able to

destroy target cells even if  the other granule compounds are normal (van den Broek et al.,
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1995; Bossi & Griffiths, 1999; Hayakawa, et al., 2002).

4. Role of NK Cells in Antitumor Resistance
In the middle of  the 1950�s, Burnet & Thomas forged the concept of

immunosurveillance, establishing that any normal host is able to recognize and eliminate

rising tumor cells even if it had not been immunologically manipulated (Burnet, 1970).

Since then many immunologists have asked if the immune system can, in fact, recognize

naturally rising tumor cells to prevent their development. Although some authors disagree

on this concept, recent advances have added fuel to this discussion, giving new evidence

of  an effective antitumor surveillance. In this way, studies with experimental model of

cancer have shown that animals depleted of some specific populations of cells (T

lymphocytes, NK or NKT, for instance) as well as specific molecules such as INF-Tγ,

TNF-Tα, IL-12, perforin and others, unequivocally show higher incidence of a variety of

tumors. Conversely, the administration of  some cytokines or induction of  their in vivo

production reduces the incidence of  primary malignancies.

The antitumor role of NK cells was originally described due to their ability to

lyse cells of  some tumor lineages maintained in culture such as Yac-1 (Moloney virus-

induced murine lymphoma) and K-562 (human chronic myeloid lymphoma) (Ortaldo et

al., 1977). The more relevant question was whether these cells were able to effectively

play an in vivo role in antitumor activity, which had been partially answered through

experimental models showing that naturally NK-lacking or artificially NK-depleted mice

are less efficient than normal animals in eliminating transplantable tumor cells and show

difficulty in preventing metastasis (Harning et al., 1989; Arisawa et al., 1990; Shibuya et

al., 1990; Chiodoni et al., 2001).

In this aspect, Arizawa et al., (1990) observed that nude BALB/c mice show

higher resistance to metastasis of colon carcinoma cells (C26) than heterozygous

counterparts. In their experiment, the authors observed that 2 days after the inoculation

of tumor cells all the animals of heterozygous control group (BALB/c nu/+) had developed

hepatic metastasis whereas any BALB/c nu/nu presented metastasis. Moreover, they

observed that 66% of  nude animals treated with anti-asialo GM-1 became susceptible to

hepatic development of  tumor cells. These data were corroborated by Chiodoni et al.

(2001) who worked with the same experimental model and supported in vivo the early

suggestion of  Herberman et al., (1975) that the higher NK activity of  nude mice is associated

with antitumor resistance.

Harning et al., (1989) have demonstrated that i.v. inoculation of  melanoma

B16F10 in C57BL/6J beige mice that show low NK activity results in the appearance of

a great number of  pulmonary metastases, whereas normal mice are resistant to the

phenomenon. However, this resistance is broken by treatment of  normal animals with

anti-NK monoclonal antibody (PK 136). Using the same model, Shibuia et al., (1990)

observed that administration of  batroxobin, an analogue of  trombin that induces metastasis

of  these cells, was able to significantly inhibit the occurrence of  pulmonary metastasis.
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They also observed that stimulation of  NK activity with poly I:C resulted in a more

intense level of inhibition of metastasis, whereas depletion of NK cells with anti-asialo

GM-1 blocked the antimetastatic treatment.

Although experimental data have shown that NK activity can be important to

inhibiting the occurrence of colon cancer metastasis, their efficiency in the

immunosurveillance of  this kind of  cancer in humans cannot be very easily demonstrable.

Aparicio-Pages et al., (1989) observed that NK cells from patients with colorectal

carcinoma show the same level of  lytic activity as normal donors. However, cells obtained

from the tumor mass show reduced lytic activity when compared with NK cells from

peripheral blood or from intestinal mucous lymphoid tissue of the same patient. These

observations suggest a local suppressive state, due to factors produced or induced by the

tumor cells themselves.

Analyzing the melanoma infiltrating cell subsets, Simony et al., (1991) observed

numerous CD8
+
 and CD4

+
 T lymphocytes as well as NK cells in all evaluated samples

(Golub et al., 1982a, 1982b; Hersey et al., 1982) suggesting the role of  these cells in the

antitumor responsiveness. Recent clinical studies by Ruggeri et al., (1999, 2002) and Giebel

et al., (2003), have demonstrated that NK cells play an important antileukemia role in

patients with acute mielogenous leukemia submitted to bone marrow transplantation from

haploidentical donor. They observed that in some cases there is incompatibility between

donor and recipient KIRs, that is, when recipient does not express inhibitory ligands for

KIR molecules of donor NK cells, these effector cells show in vivo expansion in the host.

Since they are not inhibited by leukemia cells they are able to substantially reduce the

risks of tumor recidivism.

Although colorectal (Horny & Horst 1987; Adachi et al., 1990), breast  (An et

al., 1987; Balch et al., 1990) and lung cancer tissues (Ishigami et al., 2000; Villegas et al.,

2002) show a low number of infiltrating NK cells, their presence appears to have a

prognostic value for patients with squamous cell lung carcinoma (Villegas et al., 2002),

gastric carcinoma (Ishigami et al., 2000) and colorectal carcinoma (Coca et al., 1997).

Tissues obtained from metastasis also show reduced frequency or even absence of NK

cells, whereas the patients submitted to treatment with cytokines show a marked increase

in these effector cells (CD56
+
/CD3

-
), in the adjacent or infiltrating tumor. (Vujanovic et

al., 1996).

Considering that the action of NK cells results from the balance between the

stimulatory and inhibitory signals triggered by their interaction with class I MHC molecules,

it should be remembered that, similarly to other regulatory systems, inhibitory signals are

more potent than the stimulatory ones. Because of  this phenomenon, in some situations

the NK cells need to receive additional stimulation by cytokines, whose in vivo production

can determine quantitative increase in these cells and/or enhanced lytic activity, which

can be fundamental to their antitumoral role. On the other hand, NK cells by themselves

constitute an important source of a variety of cytokines, whose production can influence

the systemic behavior of the immune system.
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5. Action of Cytokines on the Antitumor Activity of NK Cells
Many studies have been developed to evaluate the interaction between

cytokines and NK cells both through in vitro and in vivo models. One of  the main early

findings in this area was that IL-2 stimulates the MHC-independent cytotoxicity. Henney

et al. (1981) have observed that NK cells show variable toxicity against several target cells

and that previous incubation with IL-2 or type I interferon resulted in potent stimulation

of  lytic activity. These cells were called lymphokine-activated killer cells (LAK) by Grimm

et al. (1982) and it was further observed that this function is fulfilled essentially by NK

cells (Phillips & Lanier, 1986). It was also largely demonstrated that IL-2 triggers antitumor

activity in both experimental and clinical studies (Sacchi et al., 1991; Hayakawa et al.,

1994; Ueda et al., 1999).

From the 80s through the middle 90s several clinical trials were conducted to

evaluate the efficiency of  antitumor immunotherapy with LAK cells. Arienti et al., (1993)

have observed that passive transference of  IL-2-activated tumor infiltrating lymphocytes

(TIL) to melanoma patients resulted in complete or partial cure of 33% of them. Continuous

i.v. or intrasplenic infusion of  high doses of  IL-2 and further transference of  LAK in 9

patients with hepatic metastasis also resulted in complete or partial response in 1/3 of

them, who showed longer survival time (26-36 months) (Keilholz et al., 1992). This group

also observed that the treatment of  patients with hepatic metastasis of  melanoma by

intraportal injection of IL-2 and LAK cells showed better results than systemic treatment,

indicating that the cells found in situ present a more differentiated behavior than do systemic

cells. Patients with cerebral tumors receiving IL-2/LAK therapy also have shown total or

partial regression of tumor in 30% of cases, as demonstrated by tomography and clinical

signals (Ibayashi et al., 1993).

Although IL-2/LAK therapy has shown good results in some patients with a

variety of tumors, this proportion was considered low and many of the patients showed

several important adverse effects such as pulmonary dysfunction (Villani et al., 1993),

thrombocytopenia by destruction of  progenitor megacariocytes (Guarini et al., 1991),

alterations of cloatting processes (Richard et al., 1991), ischemia of the colon and severe

diarrhea (Sparano et al., 1991), besides minor symptoms such as cutaneous alterations

(Gaspari, 1991). Considering these findings, IL-2/LAK-based immunotherapy proposed

by Rosenberg�s group  (Grimm et al., 1982; Barba et al., 1989; Rosenberg et al., 1989) was

not considered a secure therapeutic method, due to the difficulty in achieving an efficient

dose of  IL-2/LAK with minimum adverse effects. Unfortunately, clinical trials for new

therapeutic methods are usually tested in patients in an advanced stage of the disease

who in general are resistant to conventional therapy. This fact makes it difficult to obtain

conclusive data on the efficiency of experimental methods to establish secure and efficient

doses for therapy.

Interleukin 15 (IL-15) is a cytokine whose structure shows some homology

with IL-2 and has also been studied for its antitumor effect. This cytokine is a crucial
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factor for the development of  NK cells in the bone marrow (Mrozek et al., 1996; Fehniger

& Caligiuri, 2001) both in mice and humans, being produced by bone marrow stroma

(Grabstein et al., 1994; Mrozek et al., 1996). IL-15 binds to a trimer receptor (IL-15R)

expressed by 99% of NK cells, whose specific a chain is associated with the same b and g

chains shared by IL-2R (Dunne et al., 2001). In vitro, IL-15 drives the differentiation of

progenitor cells towards NK (Mrozek et al., 1996) and in vivo it is required for development

and homing of  NK, NKT, CD8
+
 T, Tγδ and intestinal intraepithelial lymphocytes (IELs),

as demonstrated through experimental studies with knockout mice (Willerford et al., 1995;

Ohteki et al., 1997; Suzuki et al., 1997). In addition, IL-15 induces proliferation and supports

the in vitro survival and effector functions of  NK cells (Carson et al., 1994, 1995) more

intensively than IL-2 (Dunne et al., 2001). Similarly to IL-2, IL-15 is able to induce IFN-

γ production, enabling the possibility of  its use in antitumor immunotherapy.

Besides IL-2, IL-12 is the main subject of study on antitumor effect, due to its

potent NK stimulatory property (Kobayashi et al., 1989; Ramani & Balkwill, 1989;

D�Andrea et al., 1992; Brunda et al., 1993). Lieberman et al., (1991) observed that IL-12

increases the NK and ADCC activity of human peripheral blood leukocytes against cells

of human colon carcinoma. This cytokine acts on T lymphocytes and NK cells, enhances

their generation and cytotoxicity and, in addition, induces the production of IFN-γ, for

activation of  TH1 branch and consequently of  CD8
+
 cytolytic T cells. Using the murine

melanoma B16 model, Kodama et al., (1999) observed that IL-12 depends essentially on

the participation of  NK cells that kill the tumor cells in a perforin-dependent way. Martinotti

et al., (1995) have observed that tumor mass of  IL-12 treated C26-bearing mice are

infiltrated by NK and CD8
+
 cells. Curiously the authors noted that depletion of  CD4

+

cells with monoclonal antibody increases the NK and CTL infiltration, rather than

depressing the antitumor response. Although they could not explain it at that time (1995),

the current concepts on T reg cells suggest that this effect was due to elimination of  these

CD4
+
/CD25+ regulatory cells.

Studies with experimental Burkitt´s lymphoma show NK cells in the vicinity

of  infiltrating fine vessels (Yao et al., 1999). Under treatment with IL-12 these cells became

cytolytic for endothelial cells, probably due to release of IFN-γ and TNF-α, indicating

that NK cells and IL-12 can prevent neovascularization. The antiangiogenic action of IL-

12 however, is not dependent on NK cells, since this cytokine inhibits angiogenesis of

both murine and human tumors in NK-depleted SCID mice (Duda et al., 2000).

Several clinical studies have also investigated the importance of IL-12 in the

antitumor response:  For example Robertson et al., (1999) observed that i.v. administration

of this cytokine in cancer patients induces increased NK activity and lymphoproliferative

responsiveness of  T cells. However, it had not been observed in many kinds of  clinical

cancer and the employment of this cytokine as antitumor therapy did not achieve the

expectation suggested by experimental studies.

TNF-α and type I interferons (IFN α/β) inhibit the hepatic metastasis of

colon carcinoma C 26 in mice and this effect is attributed to the capacity of these cytokines
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to enhance NK activity, both in isolated form and synergistically (Sanada et al., 1990).

Some authors observed that human rINF-a inhibit lung metastasis from original carcinoma

and also attributed the effect to NK activation (Ramani et al., 1989).

Interleukin 23 (IL-23) is another cytokine that shows a significant effect on

NK cells, discovered by Oppmann et al., in 2000. This cytokine is a hetorodimer formed

by the subunits IL-12 p40 and a specific p19, the structure of  which presents some similarity

with IL-6, G-CSF and less homology with IL-12 p35 (Parham et al., 2002). According to

Parham et al., (2002), IL-23 acts preferentially on memory T cells inducing their proliferation

and production of IFN-γ and in this aspect is different from IL-12 that acts mainly on

naïve T cells. Lo et al., (2003) evaluated the antitumor effect of  IL-23 by using C26

carcinoma cells transfected with IL-23 genes and observed that the in situ production of

this cytokine reduces the tumorigenesis and metastasis. However, antimetastatic effect of

IL-23 was observed to be less efficient than that of  IL-12 perhaps because IL-12 is more

efficient in triggering specific cellular response to tumor antigens.

IL-21 produced by CD4 T cells also show homology with IL-2, IL-4 and IL-

15 (Parrish-Novak et al., 2000) and promote in vitro NK expansion and differentiation

from bone marrow progenitor cells (Parrish-Novak et al., 2000, 2002). Inoculation of

plasmidial DNA with IL-21 genes induces constant production of this cytokine and

supports its high serum levels that are associated with inhibition of  growth of  B16

melanoma and MCA-205 fibrosarcoma.  In vivo depletion of CD4
+
 or CD8

+
 cells do not

affect the antitumor effect of IL-21 but depletion of NK completely abolishes the resistance

against tumor growth, indicating the importance of these cells in the fight against melanoma.

Although NK cells can be insufficient to avoid tumor growth by themselves,

even under cytokine activation, it must be considered that after destruction of  some

target cells, apoptotic bodies are generated, which can be endocytized by dendritic cells

of  macrophages with subsequent presentation of  tumor antigens for T lymphocytes. In

addition, early production of IFN-γ by NK cells could activate macrophages and dendritic

cells, which in turn, can stimulate NK to play both the effector and regulatory roles in the

antitumor response.
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